Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add filters

Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.20.23287264

ABSTRACT

Background: Widespread human-to-human transmission of the severe acute respiratory syndrome coronavirus two (SARS-CoV-2) stems from a strong affinity for the cellular receptor angiotensin converting enzyme two (ACE2). We investigate the relationship between a patient's nasopharyngeal ACE2 transcription and secondary transmission within a series of concurrent hospital associated SARS-CoV-2 outbreaks in British Columbia, Canada. Methods: Epidemiological case data from the outbreak investigations was merged with public health laboratory records and viral lineage calls, from whole genome sequencing, to reconstruct the concurrent outbreaks using infection tracing transmission network analysis. ACE2 transcription and RNA viral load were measured by quantitative real-time polymerase chain reaction. The transmission network was resolved to calculate the number of potential secondary cases. Bivariate and multivariable analyses using Poisson and Negative Binomial regression models was performed to estimate the association between ACE2 transcription the number of SARS-CoV-2 secondary cases. Results: The infection tracing transmission network provided n = 76 potential transmission events across n = 103 cases. Bivariate comparisons found that on average ACE2 transcription did not differ between patients and healthcare workers (P = 0.86). High ACE2 transcription was observed in 98.6% of transmission events, either the primary or secondary case had above average ACE2. Multivariable analysis found that the association between ACE2 transcription and the number of secondary transmission events differs between patients and healthcare workers. In health care workers Negative Binomial regression estimated that a one unit change in ACE2 transcription decreases the number of secondary cases (B = -0.132 (95%CI: -0.255 to -0.0181) adjusting for RNA viral load. Conversely, in patients a one unit change in ACE2 transcription increases the number of secondary cases (B = 0.187 (95% CI: 0.0101 to 0.370) adjusting for RNA viral load. Sensitivity analysis found no significant relationship between ACE2 and secondary transmission in health care workers and confirmed the positive association among patients. Conclusion: Our study suggests that ACE2 transcription has a positive association with SARS-CoV-2 secondary transmission in admitted inpatients, but not health care workers in concurrent hospital associated outbreaks, and it should be further investigated as a risk-factor for viral transmission.


Subject(s)
Respiratory Insufficiency
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.28.22280429

ABSTRACT

Background: Investigating antibody titres in individuals who have been both naturally infected with SARS-CoV-2 and vaccinated can provide insight into antibody dynamics and correlates of protection over time. Methods: Human coronavirus (HCoV) IgG antibodies were measured longitudinally in a prospective cohort of PCR-confirmed, COVID-19 recovered individuals (k=57) in British Columbia pre- and post-vaccination. SARS-CoV-2 and endemic HCoV antibodies were measured in serum collected between Nov. 2020 and Sept. 2021 (n=341). Primary analysis used a linear mixed-effects model to understand the effect of single dose vaccination on antibody concentrations adjusting for biological sex, age, time from infection and vaccination. Secondary analysis investigated the cumulative incidence of high SARS-CoV-2 anti-spike IgG seroreactivity equal to or greater than 5.5 log10 AU/mL up to 105 days post-vaccination. No re-infections were detected in vaccinated participants, post-vaccination by qRT-PCR performed on self-collected nasopharyngeal specimens. Results: Bivariate analysis (complete data for 42 participants, 270 samples over 472 days) found SARS-CoV-2 spike and RBD antibodies increased 14-56 days post-vaccination (p<0.001) and vaccination prevented waning (B=1.66 [95%CI: 1.45-3.46]); while decline of nucleocapsid antibodies over time was observed (B=-0.24 [95%CI: -1.2-(-0.12)]). A non-significant trend towards higher spike antibodies against endemic beta-HCoVs was also noted. On average, SARS-CoV-2 anti-spike IgG concentration increased in participants who received one vaccine dose by 2.06 log10 AU/mL (95%CI: 1.45-3.46) adjusting for age, biological sex, and time. Cumulative incidence of high SARS-CoV-2 spike antibodies (>5.5 log10 AU/mL) was 83% greater in vaccinated compared to unvaccinated individuals. Conclusions: Our study confirms that vaccination post-SARS-CoV-2 infection provides multiple benefits, such as increasing anti-spike IgG titers and preventing decay up to 85 days post-vaccination.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.09.22279751

ABSTRACT

BackgroundWe chronicle SARS-CoV-2 sero-prevalence through eight cross-sectional sero-surveys (snapshots) in the Lower Mainland (Greater Vancouver and Fraser Valley), British Columbia, Canada from March 2020 to August 2022. MethodsAnonymized-residual sera were obtained from children and adults attending an outpatient laboratory network. Sera were tested with at least three immuno-assays per snapshot to detect spike (S1) and/or nucleocapsid protein (NP) antibodies. Sero-prevalence was defined by dual-assay positivity, including any or infection-induced, the latter requiring S1+NP antibody detection from January 2021 owing to vaccine availability. Infection-induced estimates were used to assess the extent to which surveillance case reports under-estimated infections. ResultsSero-prevalence was [≤]1% by the 3rd snapshot in September 2020 and <5% by January 2021 (4th). Following vaccine roll-out, sero-prevalence increased to >55% by May/June 2021 (5th), [~]80% by September/October 2021 (6th), and >95% by March 2022 (7th). In all age groups, infection-induced sero-prevalence remained <15% through September/October 2021, increasing through subsequent Omicron waves to [~]40% by March 2022 (7th) and [~]60% by July/August 2022 (8th). By August 2022, at least 70-80% of children [≤]19 years, 60-70% of adults 20-59 years, but [~]40% of adults [≥]60 years had been infected. Surveillance case reports under-estimated infections by 12-fold between the 6th-7th and 92-fold between the 7th-8th snapshots. InterpretationBy August 2022, most children and adults had acquired SARS-CoV-2 vaccine and infection exposures, resulting in more robust hybrid immunity. Conversely the elderly, still at greatest risk of severe outcomes, remain largely-dependent on vaccine-induced protection alone, and should be prioritized for additional doses.

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.19.473380

ABSTRACT

The newly reported Omicron variant is poised to replace Delta as the most rapidly spread SARS-CoV-2 variant across the world. Cryo-EM structural analysis of the Omicron variant spike protein in complex with human ACE2 reveals new salt bridges and hydrogen bonds formed by mutated residues R493, S496 and R498 in the RBD with ACE2. These interactions appear to compensate for other Omicron mutations such as K417N known to reduce ACE2 binding affinity, explaining our finding of similar biochemical ACE2 binding affinities for Delta and Omicron variants. Neutralization assays show that pseudoviruses displaying the Omicron spike protein exhibit increased antibody evasion, with greater evasion observed in sera obtained from unvaccinated convalescent patients as compared to doubly vaccinated individuals (8- vs 3-fold). The retention of strong interactions at the ACE2 interface and the increase in antibody evasion are molecular factors that likely contribute to the increased transmissibility of the Omicron variant.

5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.02.458774

ABSTRACT

The Delta and Kappa variants of SARS-CoV-2 co-emerged in India in late 2020, with the Delta variant underlying the resurgence of COVID-19, even in countries with high vaccination rates. In this study, we assess structural and biochemical aspects of viral fitness for these two variants using cryo-electron microscopy (cryo-EM), ACE2-binding and antibody neutralization analyses. Both variants demonstrate escape of antibodies targeting the N-terminal domain, an important immune hotspot for neutralizing epitopes. Compared to wild-type and Kappa lineages, Delta variant spike proteins show modest increase in ACE2 affinity, likely due to enhanced electrostatic complementarity at the RBD-ACE2 interface, which we characterize by cryo-EM. Unexpectedly, Kappa variant spike trimers form a novel head-to-head dimer-of-trimers assembly, which we demonstrate is a result of the E484Q mutation. The combination of increased antibody escape and enhanced ACE2 binding provides an explanation, in part, for the rapid global dominance of the Delta variant.


Subject(s)
Poult Enteritis Mortality Syndrome , COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.29.21261156

ABSTRACT

Abstract: Importance: Measuring humoral immunogenicity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccines and finding population-level correlates of protection against coronavirus disease (COVID-19) presents an immediate challenge to public health practitioners. Objective: To study the diagnostic accuracy and predictive value of finger prick capillary dried blood spot (DBS) samples tested using an anti-immunoglobulin G (IgG) serology assay to measure SARS-CoV-2 seropositivity and the humoral immunogenicity of COVID-19 vaccination. Design, Setting and Participants: This cross-sectional study enrolled participants (n= 644) who had paired DBS and serum samples collected by finger prick and venipuncture, respectively, in British Columbia, Canada between January 12th, 2020 and May 21st, 2021. Samples were tested by a multiplex electrochemiluminescence assay for SARS-CoV-2 anti-Spike (S), -Nucleocapsid (N) and -receptor binding domain (RBD) IgG reactivity using a Meso Scale Discovery (MSD) platform. Additionally, unpaired DBS samples (n= 6,706) that were collected in the province during the same time period were included for analysis of SARS-CoV-2 anti-N IgG reactivity. Exposure: Collection of a capillary DBS by finger prick alone or paired with serum by venipuncture. Outcome: Humoral immune response to SARS-CoV-2 measured by detection of anti-S, -N or -RBD IgG. Results: In comparison to a paired-serum reference, DBS samples possessed a sensitivity of 80% (95% CI: 61%-91%) and specificity of 97% (95% CI: 95%-98%). Receiver operator characteristic curve analysis (ROC) found that participant DBS samples tested for anti-SARS-CoV-2 IgG by MSD V-PLEX COVID-19 Coronavirus Panel 2 assay accurately classify SARS-CoV-2 seroconversion at an 88% percent rate, AUC= 88% (95% CI: 81%-96%). Modelling found that a DBS-based testing approach has a high positive predictive value (PPV) (98% [95% CI: 98%-99%]) in a theoretical population with seventy-five percent COVID-19 vaccine coverage. At lower vaccine coverages of fifteen and forty-five percent, the test's PPV decreased and the negative predictive value increased. Conclusion: We demonstrate that DBS samples, when tested using an electrochemiluminescence assay, provide a valid alternative to traditional venipuncture and should be considered to reliably detect SARS-CoV-2 seropositivity.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.18.21252016

ABSTRACT

Background COVID-19 caused by the novel coronavirus SARS-CoV-2 has caused the greatest public health emergency of our time. Accurate laboratory detection of the virus is critical in order to contain the spread. Although real-time polymerase chain reaction (PCR) has been the cornerstone of laboratory diagnosis, there have been conflicting reports on the diagnostic accuracy of this method. Methods A retrospective review was performed on all hospitalized patients tested for SARS-CoV-2 (at St. Pauls Hospital in Vancouver, BC) from March 13 – April 12, 2020. Diagnostic accuracy of initial PCR on nasopharyngeal (NP) swabs was determined against a composite reference standard which included a clinical assessment of the likelihood of COVID-19 by medical experts, initial and repeat PCR, and post-hoc serological testing. Results A total of 323 patients were included in the study, 33 (10.2%) tested positive and 290 (89.8%) tested negative by initial PCR. Patients testing positive were more likely to exhibit features of cough (66.7% vs 39.3%), shortness of breath (63.6% vs 35.9%), fever (72.7% vs 27.6%), radiographic findings (83.3% vs 39.6%) and severe outcomes including ICU admission (24.2% vs 9.7%) and mortality (21.2% vs 6.2%) compared to patients testing negative. Serology was performed on 90 patients and correlation between serology and PCR was 98.9%. There were 90 patients included in the composite reference standard. Compared to the composite reference standard, initial PCR had sensitivity of 94.7% (95% CI 74.0 to 99.9%), specificity of 100% (95% CI 94.9 to 100%), positive predictive value of 100% (95% CI 81.5 to 100%) and a negative predictive value of 98.6% (95% CI 92.5 to 100%). Discussion Our study showed high sensitivity of PCR on NP swab specimens when compared to composite reference standard in hospitalized patients. High correlation of PCR with serological testing further increased confidence in the diagnostic reliability of properly collected NP swabs.


Subject(s)
COVID-19 , Fever
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.23.20237206

ABSTRACT

BackgroundAngiotensin converting enzyme 2 (ACE2) serves as the host receptor for SARS-CoV-2, with a critical role in viral infection. We aim to understand population level variation of nasopharyngeal ACE2 expression in people tested for COVID-19 and the relationship between ACE2 expression and SARS-CoV-2 viral RNA load, while adjusting for expression of the complementary protease, Transmembrane serine protease 2 (TMPRSS2), soluble ACE2, age, and biological sex. MethodsA cross-sectional study of n=424 participants aged 1-104 years referred for COVID-19 testing was performed in British Columbia, Canada. Participants who tested negative or positive for COVID-19 were matched by age and biological sex. Viral and host gene expression was measured by quantitative reverse-transcriptase polymerase chain reaction. Bivariate analysis and multiple linear regression were performed to understand the role of nasopharyngeal ACE2 expression in SARS-CoV-2 infection. The ACE2 gene was targeted to measure expression of transmembrane and soluble transcripts. FindingsAnalysis shows no association between age and nasopharyngeal ACE2 expression in those who tested negative for COVID-19 (P=0{middle dot}092). Mean expression of transmembrane (P=1{middle dot}2e-4), soluble ACE2 (P<0{middle dot}0001) and TMPRSS2 (P<0{middle dot}0001) differed between COVID-19-negative and -positive groups. In bivariate analysis of COVID-19-positive participants, expression of transmembrane ACE2 positively correlated with SARS-CoV-2 RNA viral load (P<0{middle dot}0001), expression of soluble ACE2 negatively correlated (P<0{middle dot}0001), and no correlation was found with TMPRSS2 (P=0{middle dot}694). Multivariable analysis showed that the greatest viral RNA loads were observed in participants with high transmembrane ACE2 expression (B=0{middle dot}886, 95%CI:[0{middle dot}596 to 1{middle dot}18]), while expression of soluble ACE2 may protect against high viral RNA load in the upper respiratory tract (B= -0{middle dot}0990, 95%CI:[-0{middle dot}176 to -0{middle dot}0224]). InterpretationNasopharyngeal ACE2 expression plays a dual, contrasting role in SARS-CoV-2 infection of the upper respiratory tract. Transmembrane ACE2 positively correlates, while soluble ACE2 negatively correlates with viral RNA load after adjusting for age, biological sex and expression of TMPRSS2. FundingThis project (COV-55) was funded by Genome British Columbia as part of their COVID-19 rapid response initiative.


Subject(s)
COVID-19
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.05.20206664

ABSTRACT

Background: Quantifying antibody reactivity to SARS-CoV-2 antigens may help understand its effect on COVID-19 severity at the population level. This antibody reactivity may be particularly prevalent among childcare providers, including pediatric health care workers (HCW) who may be more exposed to circulating coronaviruses. Methods: Cross-sectional study that included adults in the Vancouver area in British Columbia (BC), Canada, between May 17 and June 19, 2020. A novel 10-plex antibody assay (IgG) was used to measure antibody reactivity against the spike protein from circulating coronaviruses (229E, NL63, OC43, and HKU1), SARS-CoV, and four SARS-CoV-2 antigens. Seroreactivity from previous viral exposure was ascertained using this assay, and by measuring total SARS-CoV-2 IgG/M/A antibodies against a recombinant spike (S1) protein using a commercial CLIA assay. Findings: Among 276 participants (71% HCW), three showed evidence of direct viral exposure, yielding an adjusted seroprevalence of 0.6% [95%CI 0.2 to 3.1%], with no difference between HCW and non-HCW, or between paediatric and adult HCW. Among the remaining 273 unexposed individuals, 7.3% [95%CI 4.5% to 11.1%], 48.7 [95%CI 42.7% to 54.8%] and 82.4% [95%CI 77.4% to 86.7%] showed antibody reactivity against SARS-CoV-2 RBD, N or Spike proteins, respectively. This reactivity was evenly distributed as a function of age, sex or between paediatric and adult HCW, and partly correlated with reactivity to circulating coronaviruses (Spearman; range: 0.147 to 0.513 for significant correlation after false-discovery rate adjustment at 5%). Interpretation: A substantial proportion of individuals in this population showed antibody reactivity against SARS-CoV-2 antigens despite low serological evidence of SARS-CoV-2 exposure.


Subject(s)
Poult Enteritis Mortality Syndrome , Severe Acute Respiratory Syndrome , COVID-19
10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.13.20153148

ABSTRACT

Background: The province of British Columbia (BC) has been recognized for successful SARS-CoV-2 control, with surveillance data showing amongst the lowest case and death rates in Canada. We estimate sero-prevalence for two periods flanking the start (March) and end (May) of first-wave mitigation measures in BC. Methods: Serial cross-sectional sampling was conducted using anonymized residual sera obtained from an outpatient laboratory network, including children and adults in the Greater Vancouver Area (population ~3 million) where community attack rates were expected to be highest. Screening used two chemiluminescent immuno-assays for spike (S1) and nucleocapsid antibodies. Samples sero-positive on either screening assay were assessed by a third assay targeting the S1 receptor binding domain plus a neutralization assay. Age-standardized sero-prevalence estimates were based on dual-assay positivity. The May sero-prevalence estimate was extrapolated to the source population to assess surveillance under-ascertainment, quantified as the ratio of estimated infections versus reported cases. Results: Serum collection dates spanned March 5-13 and May 15-27, 2020. In March, two of 869 specimens were dual-assay positive, with age-standardized sero-prevalence of 0.28% (95%CI=0.03-0.95). Neither specimen had detectable neutralizing antibodies. In May, four of 885 specimens were dual-assay positive, with age-standardized sero-prevalence of 0.55% (95%CI=0.15-1.37%). All four specimens had detectable neutralizing antibodies. We estimate ~8 times more infections than reported cases. Conclusions: Less than 1% of British Columbians had been infected with SARS-CoV-2 when first-wave mitigation measures were relaxed in May 2020. Our findings indicate successful suppression of community transmission in BC, but also substantial residual susceptibility. Further sero-survey snapshots are planned as the pandemic unfolds.

SELECTION OF CITATIONS
SEARCH DETAIL